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LE'fTER TO THE EDITOR 
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t Department of Physics, Ohio State University, Columbus, OH 43210, USA 
$School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact 
Sciences, Tel Aviv University, Tel Aviv 69978, Israel 

Received 24 June 1988 

Abstract. We present numerical simulations of AC conductance for a random resistor- 
capacitor network. The conductance obeys a probability density function p(g) 0: g-" 
( O i  a < 1 ) .  We use a highly efficient propagation algorithm to calculate the effective 
conductance of a long strip of a lattice. At low frequencies, we find that for the concentration 
p of conducting bonds less than the percolation threshold p c ,  the imaginary part of 
conductance is proportional to frequency Im(gefr) = w and the real part of conductance 
shows an anomalous frequency dependence Re(g,,,) = w2-". The results of simulations in 
such a continuum system are in agreement with the predictions of the effective medium 
and the Maxwell-Garnett approximation. We also calculate the non-universal DC conduc- 
tivity exponents in continuum percolation; the results are consistent with earlier theoretical 
predictions and numerical calculations. 

The problem of non-universal percolation in the presence of a broad distribution of 
bond strength was first studied by Kogut and Straley [ 1 3  and later by Ben-Mizrahi and 
Bergman [2] and Straley [3]. The model treated is that of conduction in a percolating 
lattice where the conductance of the bonds has the probability distribution 

p ( g ) = ( l  -p)Wg-gz)+ph(g) ( 1 )  
with h(g) = ( 1  -a )g-"  (O<g< 1 )  where O <  a < 1. 

Recently Halperin et a1 [4,5] have shown that in the so-called 'swiss cheese model' 
of a percolating system, the transport exponents may not be universal. When this 
model is mapped onto a discrete network [6], it leads to a probability distribution 
p(g) in the form of (1) .  It turns out [ 5 ,  71 that in such a model the conductivity 
exponent i is bounded by 

where t is the exact value of the standard lattice percolation conductivity exponents 
and t l  = 1 + ( d  -2)v where Y is the correlation length exponent for percolation. 

There have been many more recent developments in regard to continuum percolation 
transport properties including experimental [8], theoretical [9-111 and numerical [ 12, 
131 investigations. The calculation of the AC conductivity exponent of a composite 
medium has been carried out numerically [14, 151. Several theoretical studies of the 
frequency-dependent transport properties in continuum percolation systems have been 
described. Hui and Stroud [ 161 have investigated the AC response in metal-insulator 
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composites at low frequency and in the dilute limit of metallic components using the 
Maxwell-Gamett ( MG) approximation, and similar work has been extended near the 
percolation threshold ( p  < p c )  using the effective medium approximation ( EMA) [ 171. 
Both works show that at low frequency the AC conductance has an anomalous non- 
analytic frequency dependence Re(g,,) = u * - ~  and Im(gerr) OC W .  

In order to confirm these theoretical predictions, we have performed a numerical 
simulation on a random resistor-capacitor network in which the conductances have 
an anomalous distribution. To our knowledge, this is the first numerical determination 
of the AC conductance exponents for such a system. We use a highly efficient propaga- 
tion algorithm, originally proposed by Lobb and Frank [18] to reduce the square 
diluted resistor network to a single resistor. Such an algorithm has been applied to 
many problems, including the study of the surface plasmon modes of a metal-insulator 
composite [ 191 and critical current of a normal metal-superconductor composite [20]. 
We have generalised the algorithm to calculate the effective conductance for a long 
strip network. This approach was motivated by transfer matrix calculations [21, 221, 
which are widely used for studying transport properties on a long strip or bar lattice. 
As is well known, if the strip were infinitely long, the results of simulation would be 
exact and no ensemble average would be needed. 

We have carried out our calculations on a 10 x 20 000 random resistor-capacitor 
strip network. The conductance of the capacitor is taken as g, = ioCo where CO = F. 
We set (Y = 0.4 and resistor fraction p = 0.05 (which is in the dilute regime) or p = 0.49 
(which is close to the percolation threshold p c  = 0.5). The calculated effective conduct- 
ances for both cases are shown in figures 1 and 2 and table 1 .  Both figures are displayed 
on a log-log scale and the imaginary and real parts of effective conductance are plotted 
in the same figure for each value of concentration. The slopes of the curves give the 
exponents x and y for the power law of the frequency dependences of the imaginary 
and real parts of the conductances. As shown in table 1, we find that the imaginary 
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Figure 1. Real (0) and imaginary (A)  parts of the AC conductance plotted as functions 
of frequency for a low concentration of the metallic component. The fraction of anomalous 
conducting bonds is p = 0.05 and a = 0.4. Results are based on averaging over five realisa- 
tions. 
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Figure 2. Real (0 )  and imaginary (A) parts of the AC con-Jctance plotted as functions 
of frequency near the percolation threshold pc  = 0.5. The fraction of anomalous bonds is 
p = 0.49 and a = 0.4. Results are based on averaging over five realisations. 

Table 1. Conductance exponents x and y describing the AC conductance in a model of 
continuum percolation, as obtained from a least-squares fit of the data. The exponents 
are defined by the equations Im(g,,,)aw” and Re(g, , , )awY at low frequencies. The 
calculations are carried out for cr =0.4. p denotes the fraction of resistor bonds. Also 
shown are predictions of the Maxwell-Garnett and effective medium approximation. 

X Y 

Simulation p = 0.05 0.999 * 0.002 1.59*0.01 
Simulation p = 0.49 0.992 * 0.002 1.58 * 0.02 
Analytic theory (MGA, EMA) 1 2-cr 

part of the conductance varies approximately as o in each case while the real part 
varies approximately as w ’ - ~ .  These results indicate that earlier theories based on the 
Maxwell-Gamett approximation and on the effective medium approximation give an 
accurate prediction of the frequency dependence for the AC conductance. 

Besides simulations of the AC conductance in continuum percolation systems, we 
have also determined the non-universal exponent describing DC conductivity in the 
continuum percolation. Sen et al [12] have calculated such transport exponents by 
solving Kirchoff’s equation on a small L x L lattice (with L varying from 4 to 49) and 
averaging over 100 realisations. Murat et a1 [13] have carried out transfer matrix 
calculations for a Lx N strip (5 d Ld40, N = 100000). Since the propagation 
algorithm is more efficient than the previous two methods for calculating the effective 
conductance of a square lattice network, one can calculate the transport exponents 
more accurately on larger lattices and with more realisations with such an algorithm. 

Finite-size scaling suggests that 

GLI N u L-’/” (3) 
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where U is the correlation length exponent for percolation. We use (3) to numerically 
determine t: Values of (GL/ N) are calculated for several samples with L varying from 
6 to 20 and N =20000 and for samples with L from 20 to 100 and N =2000. Both 
groups of samples are averaged over 100 realisations. The data for both cases are 
plotted in figure 3. The y intercept which gives the conductivity exponents is calculated 
by a least-squares fit of the data. Using this approach, we obtain (for (Y = $) i/ U = 1.90 
and i / u  = 1.91 for the two groups of samples. We can estimate the error in i / u  by 
using different ranges of L to calculate it. It turns out that such statistical errors are 
no greater than *0.04. Taking U = $ (for ZD), we obtain i= 2.53 and 2.55, respectively, 
which are within the bounds of (2). Our simulation results are thus consistent with 
earlier predictions and with matrix inverse and transfer matrix calculations. 
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Figure 3. Plot of -In((GL)/N)/ln(L) against l/ln(L) for (I =). According to (3),  the y 
intercept of the line gives i/v. Squares represent the simulation results of lattices with 
width L varying from 6 to 20 and length N = 2 0 0 0 0 ;  triangles denote the results of 
simulations for lattices with width L varying from 20 to 100 and length N = 2000. 

In summary, we have calculated the AC conductance in a model of a continuum 
percolation system. We tested the frequency dependence of the AC conductance in 
the dilute limit and also near the percolation threshold. The prediction of both the 
Maxwell-Garnett approximation and the effective medium approximation are con- 
sistent with our simulations at low frequency. A more accurate calculation of the 
non-universal DC conductivity exponents is camed out in a continuum percolation 
network. 

The authors are grateful to Dr P M Hui, Dr W H Shih and Z Jiang for useful 
conversations regarding this work. This research was supported by the National Science 
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